Using real-time hybrid testing to verify the performance of full-scale tuned mass damper against wind forces in high-rise building

* Chan-Jung Kang¹⁾ Qi-Yang Liao²⁾ Jer-Fu Wang³⁾ Shih-Yu Chu⁴⁾ Chung Fang⁵⁾ Chi-Chang Lin⁶⁾

^{1),2),4),5)} Department of Civil Engineering, National Cheng Kung University, Taiwan ¹⁾<u>kang830927@gmail.com</u>

³⁾ Department of Civil Engineering, National United University, Taiwan ⁶⁾ Department of Civil Engineering, National Chung Hsing University, Taiwan

ABSTRACT

In recent years, high-rise buildings have become increasingly built in metropolitan areas. One of the major challenges faced by high-rise constructions is excitation from wind force. Tuned Mass Dampers (TMDs) are commonly used in tall buildings to reduce the vibration of high-rise structures caused by wind force. However, conducting actual TMD vibration reduction performance testing in a laboratory setting is impractical, as it is impossible to construct a target building in the wind tunnel and install the full-scale TMDs. Therefore, this research aims to utilize the technology of Real-Time Hybrid Testing with a shake table (RTHT-ST), whose core concept involves replacing the high-rise building with a numerical model while keeping the full-scale TMD on the shaking table. Through advanced control techniques of the shaking table, the iteration effects of the full-scale TMD and the high-rise building subjected wind force can be simulated and verified. This paper will provide a detailed overview of the RTHT-ST process and explore the test results of RTHT-ST for verifying the wind resistance capability of the full-scale TMD.

REFERENCES

Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York, USA.

¹⁾ PhD Candidate

²⁾ PhD Candidate

³⁾ Associate Professor and Chairman

⁴⁾ Professor

⁵⁾ Professor

⁶⁾ Adjunct Professor

The 2024 World Congress on Advances in Civil, Environmental, & Materials Research (ACEM24) 19-22, August, 2024, The K hotel, Seoul, Korea

- Chu, S.Y., Soong, T.T., and Reinhorn, A.M. (2005), Active, Hybrid and Semi-Active Structural Control A Design and Implementation Handbook, John Wiley & Sons Ltd, West Sussex, UK.
- Chu, S.Y., Lu, L.Y., and Yeh, S.W. (2018), "Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table", Structural Control and Health Monitoring, Vol. 25, No. 3, e2124.